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ABSTRACT
In this paper, we propose a method to identify good qual-
ity Wikipedia articles by mutually evaluating editors and
texts. A major approach for assessing article quality is a
text survival ratio based approach. In this approach, when
a text survives beyond multiple edits, the text is assessed as
good quality. This approach assumes that poor quality texts
are deleted by editors with high possibility. However, many
vandals delete good quality texts frequently, then the sur-
vival ratios of good quality texts are improperly decreased
by vandals. As a result, many good quality texts are unfairly
assessed as poor quality. In our method, we consider editor
quality for calculating text quality, and decrease the impacts
on text qualities by the vandals who has low quality. Using
this improvement, the accuracy of the text quality should
be improved. However, an inherent problem of this idea is
that the editor qualities are calculated by the text qualities.
To solve this problem, we mutually calculate the editor and
text qualities until they converge. We did our experimen-
tal evaluation, and we confirmed that the proposed method
could accurately assess the text qualities.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems

Keywords
Wikipedia, Quality, Peer Review, Edit History, Link Anal-
ysis

1. INTRODUCTION
Wikipedia1 is one of the most successful and well-known

User Generated Content (UGC) websites. Any user can
edit any article, Wikipedia has more and fresher informa-
tion than existing paper-based encyclopedias. Many experts

1http://www.wikipedia.org/
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submit texts to Wikipedia, and the texts should be informa-
tive for readers. However, these texts are not reviewed by
experts, then the number of poor quality texts are also dra-
matically increase. On the other hand, many readers cannot
easily identify texts which are good quality or not, because
not all readers are experts. Therefore, there is a need for
automatically identifying which texts in Wikipedia are good
quality or not.

In this paper, we propose a method for identifying good
quality texts from edit history. The definition of quality has
many aspects such as credibility, expertise, and correctness,
then measuring excellence is difficult task. In this paper,
we use survival ratio based approach for calculating text
qualities, which is one of the major approaches for measuring
text qualities [1]. We measure the number of times which
editors decide the text should remain, which is a key idea of
survival based approach. When many readers feel excellent
for a text, the quality of this text is good, but when many
readers feel that a text should remove, the quality of this
text is poor. Adler et al. [2] investigated that 79% of poor
quality texts are short-lived. From this result, if editors find
poor quality texts, many editors remove them. This means
that if a text survives beyond multiple edits by the other
editors, the text should be good quality. Therefore, using
the survival ratio of texts, the system calculates the text
quality.

Example 1: Let us consider a motivating example. One
editor ea writes a text p(ea). Then, another editor eb edits
another text p(eb), but keeps p(ea) intact. In this case,
we assume s/he judged p(ea) to be good quality because
eb remains p(ea) as it is. Next, another editor ec deletes
p(ea). We assume that ec judged p(ea) to be poor quality,
hence s/he deleted the text. As a result, p(ea) is confirmed
by eb, but not confirmed by ec. If ec had not delete p(ea),
the quality in this case would have been higher than that in
the former case, because the paragraph p(ea) is trusted by
one editor in the former case whereas it was trusted by two
editors in the latter case. In this case, the survival ratio of
p(ea) is 1 when eb edits, and 0 when ec edits. Therefore, the
overall survival ratio of p(ea) is 0.5.

In this method, they assume that the quality of article be-
comes good according to the number of edits, because they
assume all editors delete only poor quality texts. However,
this assumption is not always true because of edits by van-
dals. Vandals delete not only poor quality texts but also
good quality texts. If vandals delete a text, the survival ra-
tio of the text is overly decreased. In Example 1, if ec was a
vandal, survival ratio of ea’s text should not be decreased.



To solve this problem, we need to detect which editors are
vandals and which are not, and re-adjust survival ratios of
texts in accordance with the editor qualities.
In this paper, we propose a method for mutually calcu-

lating text qualities using both survival ratios of texts and
editor qualities. We assume that vandals rarely submit good
quality texts, whereas good quality editors frequently sub-
mit good quality texts. We define an editor quality as the
average text qualities written by the editor. However, text
qualities are calculated on the basis of editor qualities. In
short, one quality is calculated by another quality. There-
fore, it is hard to calculate the text qualities using editor
qualities. To solve this problem, we first set editor qualities
as constant values and calculate text qualities. Next, we cal-
culate the editor qualities by using text qualities. Again, we
calculate the text qualities using the editor qualities. In this
way, we mutually calculate editor and text qualities. Using
this method, we can calculate a text quality that takes into
consideration that of its editor qualities.
In our method, we use both edit history analysis tech-

niques, such as Adler et al. [1–3], Hu et al. [4], and Wilkin-
son et al. [5], and link analysis techniques, such as HITS [6],
PageRank [7], and SALSA [8]. In our system, we can draw
a bipartite graph using sets of editors and texts as nodes.
Therefore, using link analysis techniques, we can calculate
editor and text importance [9].
We implemented our proposed system and baseline sys-

tem as a Web application, and evaluated the accuracy of
text qualities. We implement the method which use only
text survival ratio to the baseline system. We evaluated our
proposed system using the Japanese version of Wikipedia’s
edit history data. From the results, we found that when we
pick up 100 articles using baseline method and our proposed
system, our proposed system can identify 78 good quality
articles while the baseline system can identify only 61 good
quality articles.
The rest of this paper is organized as follows. First, in sec-

tion 2, we summarize related works about measuring qual-
ity of Wikipedia, which use explicit and implicit features.
In section 3, we describe how to measure the text, editors,
and version qualities. In section 4, we discuss the evaluation
results. Finally, in section 5, we close with conclusions and
future work.

2. RELATED WORK
There has been much research in calculating quality de-

grees of products, people, and objects using reputation based
method [10,11]. A key concept for evaluating Wikipedia ar-
ticles is the peer review process. Wikipedia is not thought to
have a peer review system because most texts are instantly
made and saved, though no one reviews these texts. How-
ever, Stivila et al. [10] mentioned that the open edit system
is a kind of peer review system where editors of the system
vote on implicit features of the texts.
In these investigations, many features are extracted from

Wikipedia data in many studies, and they can be divided
into two types: explicit and implicit features. Explicit fea-
tures are the user’s decision which are directly input to the
system by users, and implicit features are the user’s deci-
sion which the system presumes from their behaviors. In
this section, we describe the studies that have used explicit
and implicit features and also describe why we choose to use
implicit features.

2.1 Explicit Features
Explicit features are commonly used to evaluate quality

of information, products, and objects. For example, many
online shopping sites like Amazon.com2 have voting systems
for users to evaluate products. When users want to evalu-
ate how satisfied or not they are with a product they have
bought, they give the product 1-5 stars and submit review
texts. Then, the system presents the average number of stars
along with the reviews. If the other users want to know the
quality or the satisfaction of the products, they refer to the
number of stars and reviews, and decide whether to buy it
or not. This system has been implemented as a part of many
online Web services, such as YouTube3 and Google+4, be-
cause it is easy to implement and the process of calculating
the number of stars is easy and clear.

Kramer [12] implemented the voting system onMediaWiki5

for educational use, and also implemented at the English
version of Wikipedia as Article Feedback Tool 6. Using
these systems, users easily understand which are good qual-
ity articles by referencing these votes. However, one problem
with this system is that not every user always appropriately
evaluates or reviews. In fact, according to statistics about
YouTube, almost all users who vote give the highest score
to almost all videos they votes on [13]. Moreover, the sur-
vey of the Article Feedback Tool by Wikipedia7 shows that
90.9% rates are the highest score. From this statistics, we
find that users rate only good targets, but they do not rate
poor targets.

The advantage of this system is that users can directly
evaluate quality of targets. However, the disadvantage is
that only a small number of users input negative ratings.
Therefore, if there is a target with a small number of vot-
ing, we cannot identify the target as either the poor quality
target or the non-reviewed target. One reason of this prob-
lem is a lack of negative ratings, which is hard to recover
by analysis of ratings. Therefore, we do not use explicit
features.

2.2 Implicit Features
Implicit features are the user’s decisions which the system

presumes from their behaviors. When the system uses these
features, users do not need to input the evaluation of items.
Our proposed method uses this method. However, how can
users’ evaluations be presumed from their behavior?

Lifecycles of texts are used for calculating qualities of texts
or articles. Wöhner et al. [14] calculate Wikipedia article
qualities using the lifecycle of texts. In this method, they
discovered that the quality and lifecycle of a text have a
relationship. Halfaker et al. [17] presume implicit features
from contribution degrees for editors. In this method, they
proposed six heuristic assumptions about why editors con-
tribute to Wikipedia. These ideas are appropriate when the
articles are frequently edited. However, the frequency of
edits are different, then the lifecycle of a text is different
for every article. In addition, when edit warring occur, this

2http://www.amazon.com/
3http://www.youtube.com/
4https://plus.google.com/
5http://www.mediawiki.org/
6http://en.wikipedia.org/wiki/Wikipedia:Article\
%20Feedback\%20Tool
7http://www.mediawiki.org/wiki/Article_feedback/
Survey



method cannot calculate appropriate qualities. Our method
can calculate appropriate qualities if articles are not only
infrequently edited but also suffering an edit war because
we consider editor qualities.
Adler et al. [1–3], Hu et al. [4], and Wilkinson et al. [5]

proposed a method for calculating quality values from edit
histories. This method is based on survival ratios of texts.
However, they did not consider editor qualities. Thus, if van-
dals delete articles frequently, the qualities of deleted texts
decrease, and so the system cannot calculate appropriate
text qualities. In addition, this method cannot calculate the
quality values for new, up-to-date texts. In our method, we
use editor quality values as well as text qualities. Therefore,
we can calculate qualities for new texts by using the editor
qualities.
Adler et al. described that reputation systems can be clas-

sified into two categories: chronological, where a reputation
is computed from the chronological sequence, and fixpoint,
where a reputation is computed via a fixpoint calculation.
Their algorithms are classified into chronological algorithms,
because they aim to develop realtime quality calculation
method. However, our proposed algorithm is classified into
fixpoint algorithm, because the aim of our proposed method
is to calculate accurate text qualities, even if the method is
computationally heavyweight. However, this computational
cost is not an important problem, because our method can
be easily implemented to distributed computing frameworks
such as Hadoop8.

3. PROPOSED METHOD
Our goal is to assess qualities of articles by mutually eval-

uating text and editor qualities. First, in section 3.1, we
describe the key idea. Next, in section 3.2, we define several
notations that are used throughout this paper. Then, in
section 3.3, we describe how to calculate quality values. In
section 3.4, we describe why our proposed system is resistant
to edit war.

3.1 Key Idea
The goal of this study is to calculate article qualities us-

ing survival ratio based approach. However, using this ap-
proach, good quality articles attacked by vandals are identi-
fied as poor quality, because when the vandals edit articles,
they may delete good quality texts and add poor quality
texts. Moreover, if the vandals try to reduce qualities of the
other editors, the vandals delete texts written by those ed-
itors, because the survival ratios of the texts can easily be
reduced by the vandals. In short, the disadvantage of this
method is its weakness to vandalism. To solve this problem,
we must detect which editors are vandals or which are not.
Our key idea is that we adjust the text qualities by using

the editor qualities. We believe that survival ratio of text
is an important factor, but a quality of editor who deletes a
text is also an important factor for calculating text quality.
We assume that vandals rarely write good quality texts, so
their text qualities should be low. Therefore, if an editor
deletes a text and has a low quality value, we adjust the
decreased survival ratio of this text so that it increases, be-
cause this deletion should be considered inappropriate. By
using our proposed method, the accuracy of text qualities
should improve.

8http://hadoop.apache.org
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Figure 1: Notations of this paper.

3.2 Modeling
In this section, we define notations that are used through-

out this paper as shown in Figure 1. On Wikipedia, every
article has a version list V = {vi|i = 0, 1, · · · , N} where i is
the version number, and vN is the latest version. We denote
that if i = 0, v0 is a version with empty contents and no
editor. When editor e in all Wikipedia editors E creates a
new article, the system automatically makes two versions,
v0 and v1, and then the system stores the text of editor e in
v1 which consist of one text p(e). We identify editors using
editor names or IP address for anonymous editor. Then,
we define version vi = {p(e)|e ∈ E} as a set of complete
texts that is stored at i-th edit and that consists of a text
by 1, 2, · · · , i-th editors. p(e) is a text added by editor e. If
e deletes all texts from i-th version, vi is an empty set.

Editor e creates a set of texts P (e) = {p(e)} where p(e)
is a text created by e for all articles in Wikipedia. When
editors edit one article by same user more than twice con-
secutively, the system keeps the last version and deletes the
other versions created by the user. That is, the editor of a
version and that of next version are always different.

The aim of our proposed method is calculating text qual-
ity τ(d, e) of text p(e). To accomplish our mission, we should
calculate converged text quality τK(d, e) on article d by edi-
tor e, and converted editor quality u′

K(e) of editor e. τ0(d, e)
is an initial text quality, and u′

0(e) is an initial editor qual-
ity. K is a number of process of τk(d, e) and u′

k(e) converges.
In step 6. at section 3.3, we mutually calculating k-th text
quality τk(d, e) and k-th editor quality u′

k(e) until converge.
τK(d, e) and u′

K(e) is the converged text and editor quality,
respectively.

3.3 Calculation Method of Text and Editor Qual-
ity

Figure 2 shows the overview of calculating text qualities.
Our proposed system consists of the following seven steps.

1. Extract articles from Wikipedia edit history, and iden-
tify texts and their editors from edit history. (Section
3.3.1)

2. Calculate initial text quality using survival ratios of
texts. (Section 3.3.2)
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Figure 2: Overview of our proposed method.

3. Calculate initial editor qualities using text qualities.
(Section 3.3.3)

4. Calculate adjusted text qualities using both editor and
text qualities. (Section 3.3.4)

5. Calculate editor qualities using text qualities. (Section
3.3.5)

6. Repeat processes 4. and 5. until the text quality con-
verges.

7. Calculate version qualities using converged version qual-
ities. (Section 3.3.6)

3.3.1 Extract Texts and Editors from Edit History
First, we extract all articles from the Wikipedia edit his-

tory, and identify which editor edited which texts. Edit his-
tory stores the extract title, editor’s name, and a snapshot
of the article for every version. We extract these data, and
store them in a database system. At this time, we identify
the editors of the texts using diffs. The texts that editors
have added are the texts that differ between the current and
previous versions. When a text is not in the previous version
but is in the current version, the text must have been writ-
ten by the editor of the current version. Using this policy,
we identify the editor of every text.
Identifying the editors of the texts is important and dif-

ficult issue. In our system, we use a letter based method
which are similar to the difference page by MediaWiki. Fong
et al. proposed an intuitive method [18], but this method

+-+ Apirak.com

v1
+-+ Apirak.com

v2
+-+ Apirak.com

v3

e1 e2
Yoshihiko Noda
is the president
of Japan.

Yoshihiko Ueshima
Noda
is the Prime Minister
of Japan.

Yoshihiko Noda
Ueshima
is the president
Prime Minister
of Japan.

p(e1) = {"Prime Minister"} p(e1) = {"Ueshima","Prime Minister"} 

Figure 3: Example of edit history (Example 2.)

cannot be easily adopted to our system. Because in East
Asian languages (Chinese, Japanese, Korean), each term is
not separated by space character.

When we extract versions, we should consider reverted
versions, which are the versions that have been changed back
into their previous versions. In this case, when we simply use
this policy, we identify the editor of the current (reverted)
version who wrote the text that differs between the current
and previous versions. However, if this reversion is during an
edit war, the survival ratio of the text decreases, leading the
text qualities to decrease. To solve this problem, we identify
the editors of a reverted version to be the editors of the
original version, and the editors who revert the articles back
to their previous versions are treated as neither adding nor
deleting anything. Using this policy towards reversions, the
text qualities are not affected by vandalism or inappropriate
edit warring. In section 3.4, we discuss why we use this
method.

3.3.2 Initial Text Quality
Next, we calculate initial texts’ quality τ0(d, e) in article

d and editor e. We defined the text quality as a survival
ratio beyond multiple edits, which is similar to Adler’s def-
inition of quality. When editors edit articles, they evaluate
and remove any inappropriate or poor quality texts. There-
fore, if texts survive beyond multiple edits, they should be
considered good quality. Using this policy, we calculate text
qualities.

One important policy is that editors do not evaluate them-
selves. When editors add texts, the texts are not evaluated
at that time. We use this policy of self evaluation, because,
if we permit editors to evaluate themselves, vandals can eas-
ily increase survival ratios of texts they edit, which easily
increases qualities of the vandals.

Example 2: We explain this policy using a specific ex-
ample. Figure 3 shows the example of an edit history from
1st version to 3rd version. Using this example, we explain
how to calculate text quality p(e1) that are added by editor
e1 in version v1. First, we identify the texts that are added
in version v1. In this example, the editor e adds the texts
“Ueshima” and “Prime Minister” as p(e1) to version v2. The
number of letters of p(e1) is 21 including spaces. Next, we fo-
cus on the survival ratio of p(e1). The editor e2 of v3 deletes
the text “Ueshima” but keeps the text “Prime Minister”. In
other words, e2 only accepts 14 letters. Therefore, the num-
ber of letters of p(e1) is 14. From these edits, editor e1
obtains the quality τ0(d, e1) = log2 7+ log2 14− log2 7 ≃ 3.7
from this article.

When we calculate text quality, we use the number of
letters in a log scale instead of the raw number of letters,
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because we face a problem when the editor adds long texts.
If an editor adds 10, 000 letters to the article, and the texts
survive only one edit, this text quality value is 10, 000, which
is the same quality as a 100-letter texts that survives beyond
100 edits. We think that the latter text is higher quality than
the former text. Therefore, we count the number of letters
using a log scale.
Here, we define the text quality τ0(d, e) in article d by

editor e as follows:

τ0(d, e) =
∑

p(e)∈P̄

log2(|p(e)|+ 1) (1)

where P̄ is a set of texts which is not on the version edited by
e, and |p(e)| is the number of letters in p(e). This equation
means the summation of the number of letters on texts that
are written by e. We remove the number of letters on the
version edited by e himself/herself because of the policy of
non-self-evaluation.
We give an example below to clarify how to calculate text

quality.
Example 3: We explain more complex example than ex-

ample 2. Figure 4 shows an example of edit history for editor
es. First, editor es writes 7 letters. Then, ea deletes 4 let-
ters and leaves 3 letters. At this time, ea confirms that the
remaining 3 letters are high quality, so es obtains the qual-
ity log2(3 + 1) = 2. We should note that es does not obtain
the quality log2(7 + 1) from the first 7 letters, because this
text is not confirmed by the other editors. Next, eb leaves 1
letters, so es obtains log2(1+1) = 1 as a quality from eb. ec
deletes all texts by es, so es obtains no quality from ec. es
reverts the article from version v4 to v1 as version v5. As we
already mentioned in section 3.3.1, if es reverts the article,
the reverted text belongs to es. In other words, this case is
the same as that in which es writes 7 letters. However, as
we mentioned above, es does not evaluate himself/herself.
Therefore, es does not obtain the quality log2(7 + 1) = 3.
Finally, ed deletes all texts by es, so es does not obtain a
quality. In short, es leaves 7, 3, 1, 7 letters each to the arti-
cle, so es obtains log28+ log24+ log22+ log28 = 9. However,
first and last 7 letters are not confirmed to be correct by the
other editors, so we should reduce log28 + log28 from es’s
quality. As a result, es obtains 3 as the quality from this
edit history. If ed not es reverts texts of es at version v5, ed

can confirm es’s texts at version v5. In this case, es obtains
6 as the quality.

In our method, we measure the survival ratio using num-
ber of edits, we do not use length of survival time. This is
because, Adler et al. [1] discovered by experiments that us-
ing number of edits makes better accuracy than using length
of survival time.

3.3.3 Initial Editor Quality
We calculate editor quality using the text quality calcu-

lated at section 3.3.2. We define the initial editor quality
u0(e) of editor e as follows:

u0(e) =

∑
d∈D(e)

τ0(d, e)

|D(e)| (2)

where D(e) is a set of Wikipedia articles that e edits, and
|D(e)| is the number of articles in D(e). If we calculate
u0(e), we remove texts of articles that are created for specific
purposes, such as notes, rules of Wikipedia, editors’ private
articles, and so on. This is because editors mainly write
these texts to express their opinions and do not always delete
them. Therefore, the qualities of these texts tend to be
higher than those of general articles.

We normalize u0(e) to range between 0 and 1 as follows:

u′
0(e) =

u0(e)−mine′∈E u0(e
′)

maxe′∈E u0(e′)−mine′∈E u0(e′)
(3)

3.3.4 Text Quality
Next, we calculate the text quality using editor quality.

This phase is derived from initial text quality calculation
method written in section 3.3.2. In this phase, we integrate
the survival ratio of texts and those of the editors who delete
them using weighted summation, whereas the initial quality
calculation method only use the survival ratio of texts.

We calculate the text quality τk(d, e) as follows:

τk(d, e) =α · τ0(d, e)

+ (1− α) ·
∑

e′∈E′

|δ(e′)| · (1− u′
k−1(e

′))} (4)

where E′ is a set of editors who delete p(e), δ(e′) is the letters
in p(e) deleted by e′, |δ(e′)| is the number of letters in δ(e′),
and α (0 ≤ α ≤ 1) is the parameter to control the effect
of editor quality. The first part of expression means the
initial text quality which is the same as section 3.3.2, and
the second part means the number of deleted letters with
qualities of editors who delete them. If an editor who has a
poor quality deletes a text p(e), then the value of the second
part is low, then the value of τk(d, e) is almost the same as
τ0(d, e). Therefore, if editor quality is low, the editor quality
does not affect the text quality. In this case, if the editor who
deletes the text has a good quality, the second expression has
a high value. Thus, the value of τk(d, e) decreases more than
τk−1(d, e).

Example 4: We explain how to adjust text quality using
editor quality. Figure 5 shows the example of an edit history
that is a part of the edit history in Figure 4. In this example,
es adds 7 letters at version 1, ea deletes 4 letters at version
2, and eb deletes 2 letters at version 3.

We adjust the number of letters in version 2. In this ver-
sion, ea deletes 4 letters, and α is set to 0.5, so we assume
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ea deletes 2(= 4× 0.5) letters. We decide whether the other
2 letters should be deleted or not using the quality of ea. If
τk−1(d, ea) = 0, ea is a poor quality editor, so it is possible
that ea deletes appropriate text. In this case, we assume
2 letters are left, not deleted by ea. On the other hand, if
τk−1(d, ea) = 1, ea is a good quality editor, ea should delete
inappropriate text. Then, we assume 4 letters are deleted
by ea.
Next, we adjust the number of letters in version 3. In

this version, eb deletes 2 letters. Then, we assume eb deletes
1 (= 2 × 0.5) letter. We decide whether another 1 letter
should be deleted or not in the same way. If τk−1(d, eb) = 0,
we assume 1 letter is left, but if τk−1(d, eb) = 1, 1 letter
is deleted. As a result, if both τk−1(d, ea) and τk−1(d, eb)
are 0 and if both ea and eb are low quality, the number of
letters by es is 7 in version 1, 5 (= 7 − 2) in version 2, and
4 (= 7− 2− 1) in version 3.

3.3.5 Editor Quality using adjusted Text Quality
Using adjusted text quality τk(d, e), we define the editor

qualities uk(e) of e as follows:

uk(e) =

∑
d∈D(e)

τk(d, e)

|D(e)| (5)

This equation is almost the same as the equation (2) de-
scribed in section 3.3.3.
We normalize uk(e) to range between 0 and 1 as follows:

u′
k(e) =

uk(e)− min
e′∈E

uk(e
′)

max
e′∈E

uk(e
′)− min

e′∈E
uk(e

′)
(6)

We repeat the processes in sections 3.3.4 and 3.3.5 until the
values of τk(d, e) and uk(e) converge.
Here we discuss the possibility of convergence of τk(d, e)

using intuitive example. Figure 5 shows the number of let-
ters by es, and τk(d, es) is defined by sum of number of
letters with log scale. We do not consider the number of
letters of the first version. The number of letters of the sec-
ond value is between 3 and 5 when α is set to 0.5, which is
a finite number, if editor ea is a high quality editor or not.
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Figure 6: Example of edit history (Example 5.)

In practice, this value is between 0 and 7 if α is set to any
number. In the same way, the number of letters of the third
version is between 0 and 7, which is at most 7. Moreover,
the value of τk(d, e) is always in the grey area of figure 5 if
editor quality is any value. Therefore, in this case, τk(d, e)
is always converge because this value is at most the number
of letters times the number of the remained version.

In our experiment 1. at section 4.2, we confirm that text
and editor qualities converge.

3.3.6 Qualities of Versions
Using the converged value of u′

K(e), we define the version
quality T (vi) of version vi as follows:

T (vi) =

∑
e∈P (e)

u′
K(e) · |p(e)|

|vi|
(7)

where |vi| is the number of letters in vi, |p(e)| is the number
of letters in p(e), and u′

K(e) is the editor quality of e. This
function means that the version quality is the weighted av-
eraging value of text quality, and the weight is the number
of letters in the text.

3.4 Edit War
Our proposed method is resistant to vandalism. To con-

firm that the qualities of editors are not increased or de-
creased by vandalism, we discuss an example.

Example 5: We consider two cases: edit history (a) with
edit warring and (b) without edit warring. Figure 6 shows
the example of an edit history. In case (a), es writes 7
letters, and then a vandal ev deletes all text of es. es reverts
to version 1, but ev deletes all text of es again. es reverts
to version 1 again. Then, ea deletes 4 letters, eb deletes 2
letters, and ec deletes 1 letter. Case (b) is the same edit
history without the vandal ev. First, es writes 7 letters,
then ea, eb, and ec delete 4, 2, and 1 letters, respectively.

From these cases, we calculate the text quality by es using
equation (1) described in section 3.3.2. In case (a), es leaves
7, 0, 7, 0, 7, 3, 1, and 0 letters at from version 1 to 8,
but version 1, 3, and 5 are not verified by the other editors.



Then, text quality by es is log2(3+1)+log2(1+1)+log2(0+
1) = 3. In case (b), es leaves 7, 3, 1, and 0 letters at from
version 1 to 4, but version 1 is not verified by the other
editors. Then, text quality by es is log2(3 + 1) + log2(1 +
1) + log2(0 + 1) = 3, which is the same value as case (a). In
short, vandals do not affect the qualities.
In general, the behavior of vandals, such as inappropri-

ately adding and deleting good quality texts, is not permit-
ted by the other editors, so many non-vandal editors try to
counter the behavior of vandals. In our proposed system, if
the behavior of an editor is permitted by the other editors,
the quality of the editor increase. As a result, vandals do
not affect the qualities of the other editors.

4. EXPERIMENTS
To determine the accuracy of the article quality calculated

by our proposed system, we did two experimental evalua-
tions. In these evaluations, we tried to confirm that when
we use the editor quality to calculate the text quality, the
accuracy of the text quality should improve. However, we
cannot identify which text is good quality or not, because
the unit of text is too small. Therefore, we evaluate article
quality, which is a latest version quality calculated at section
3.3.6.
We compared three systems: (baseline) our proposed sys-

tem without using editor quality, (once) our proposed sys-
tem using editor qualities at once, and (proposed) our pro-
posed system using both converged editor and text qualities.
When we calculate version quality T (vi), in baseline, we use
steps 1, 2, and 7 from section 3.3, then we set all editors’
quality u′

K(e) to 1 as a constant value because we do not
execute step 3, so editor qualities are not defined. We set
baseline as almost equal to Adler et al.’s system [1] to com-
pare our work with related work. In once, we use all steps
except step 6. In proposed, we use all seven steps. We cre-
ated three article lists, which were ordered by the newest
versions of the qualities of these three systems. These lists
are query-independent order.
In experiment 1, we set the answer set of “featured” and

“good” articles as a correct answer set. Featured and good
articles are selected by the votes of Wikipedia users. These
articles are evaluated by“Featured article criteria”9 and peer
reviewed by many active users. If vandals nominate poor
quality articles for featured or good articles, the nomination
is rejected by administrators. Therefore, we believe that
these articles are good quality, so we could use featured and
good articles as good quality articles for the test set.
In this experiment, we compared three systems using rela-

tive precision ratios. In this evaluation method, we compare
the answer set with the list of articles in ascending order
of their qualities. If articles in the answer set are ranked
higher, we will be able to confirm that the system calculates
accurate qualities. The key in this evaluation is the appro-
priateness of answer sets. In current information system
retrieval evaluation, observers create answer sets by judging
relevance of articles. However, judging the quality of articles
is difficult, so we cannot confirm the appropriateness of qual-
ity judgments of articles. Therefore, we put only featured
and good articles in the answer set.
Experiment 1 was objective because general Wikipedia

9http://en.wikipedia.org/wiki/Wikipedia:Featured_
article_criteria

editors created the answer set. However, this experiment
was insufficient, because many good quality articles were
not in the answer set because of the strict criteria articles
must meet to be deemed featured or good. Therefore, we did
one more manual evaluation: experiment 2 confirmed that
our proposed method did not judge poor quality articles to
be of good quality.

In both experiment 1 and 2, we set α = 0.8 as a parameter
of equation (4). Before these experiments, we set α from 0.1
to 1 in 0.1 increments and calculate averaging precision ratio
as preliminary experiment. In this result, when we set 0.2,
we got the highest averaging precision ratio of our proposed
system.

4.1 Data Sets
In these experiments, we used the Japanese version of the

Wikipedia edit history dumped on November 2, 2010, which
can be downloaded at the Wikipedia dump download site10.
These data include 1, 889, 129 articles and 24, 054, 128 ver-
sions. The number of editors is 2, 178, 003 including not
registered editors who are identified by IP addresses, and
bots which are listed11. This edit history is compressed by
bzip2 and is about 20.1GB. From these articles, we removed
the articles that does not contain link to Wikipedia articles.
We also removed the articles for specific purposes, such as
redirect pages, notes and rules of Wikipedia. We referred to
Wikipedia statistics12 to decide this definition. As a result,
the number of articles is 713, 002.

4.2 Experiment 1: Evaluation using Featured
and Good Article

In this experiment, we did the evaluation using a relative
precision ratio per each recall level. Relative precision ratio
P is Pt, a number of correct articles selected by the target
system, divided by Pb, the number of correct articles selected
by the baseline system. Relative precision ratio P is defined
as follows:

P =
Pt

Pb
(8)

When P is larger than 1, the target system is more accurate
than the baseline system. We set the baseline system as
baseline and the target system as once and proposed. There-
fore, when we draw a relative recall-precision graph, we first
draw a general interpolated 11-pt recall precision graph [19].
Then, we calculate the relative precision ratio P for each re-
call level. Finally, we draw a relative precision ratio for each
recall level.

As we already mentioned in section 4, we set the answer
set of articles as featured and good articles from Japanese
Wikipedia. Since there were 87 featured articles and 499
good articles, we selected 586 articles for the answer set.
Next, we calculated articles’ qualities using our proposed
method and the baseline method and listed articles in de-
scending order of quality values. Finally, we calculated the
relative precision ratio for each recall level using the article
list and the answer set.

10http://dumps.wikimedia.org/jawiki/20101102/
11http://ja.wikipedia.org/wiki/WP:BOTST
12Wikipedia: What is an article?:
http://en.wikipedia.org/wiki/Wikipedia:What_is_an_
article
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Figure 7 shows a relative precision ratio per each recall
level of once and proposed in comparison with baseline. From
this graph, we discovered that proposed, our proposed method
calculates article qualities more accurately than baseline, the
baseline method. We also confirmed that when we use edi-
tor qualities for multiple times until convergence, the relative
precision ratio increases.
In this experiment, we also confirmed that both text and

editor qualities were converged when we calculate qualities
18 times. We did not observe diverged and oscillate values.
However, if we use the other language version of Wikipedia
as a dataset, these qualities may diverge or oscillate. This
is because, when linked graph of editors and texts are sep-
arated to multiple graphs, the values may not converge. In
our experiment, we do not face this problem. However, if we
face this problem, we should develop a method to integrate
multiple graphs into single graph.
In the details of experimental results, we found that our

proposed method is effective if vandals attack the articles
and cause an edit war, which involves many inappropriate
additions and deletions. In the results of proposed, there
are 36% of articles attacked by vandals in the top 100 posi-
tions, whereas there are 0% of articles in baseline, and 28%
of articles in once. When we count articles attacked by van-
dals, we use list of “Wikipedia: most vandalized pages”13.
When edit wars happen, vandals delete texts even if they
are good quality. Generally, vandals do not indiscriminately
delete texts; they delete the texts of specific editors whose
opinions they oppose. The articles about religion and pol-
itics especially face this kind of edit warring. As a result,
vandals decrease qualities of texts by good quality editors.
Using our proposed method, the quality values of texts by
good quality editors increase, and the quality values of ver-
sions that face vandalism increase. On the other hand, the
qualities of versions that do not face vandalism neither in-
crease nor decrease. This is not a problem for our proposed
system, because when the articles do not face vandalism, the

13Wikipedia: most vandalized pages (in Japanese) :
http://ja.wikipedia.org/wiki/Wikipedia:%E8%8D%92%E3
%82%89%E3%81%95%E3%82%8C%E3%82%84%E3%81%99%E3%81%84
%E3%83%9A%E3%83%BC%E3%82%B8%0D

system can calculate appropriate qualities. This means that
our proposed method is effective for the articles that face
vandalism.

At recall level from 0.5 to 0.6, relative precision ratio of
once is lower than 1, which means that accuracy of once
is lower than baseline. This is because of the editors who
edit a small number of articles. Even editors who have high
qualities do not always submit good quality texts. There-
fore, if there is a good quality text that has survived beyond
multiple edits, but the editor’s quality is low, the text is
considered low quality by once. However, generally the ed-
itor’s low quality is caused by vandalism. Therefore, when
we calculate editor and text qualities, we can recover this
problem, so relative precision ratio of once is improved and
is higher than 1.

At a recall level from 0.7 to 0.8, relative precision ratios
of once and proposed are almost the same, because baseline
cannot find good quality articles at this level. baseline can
find good quality articles when the articles have edit histo-
ries long enough for the text qualities to be calculated. On
the other hand, both once and proposed can find good quality
articles with short edit histories, because these systems cal-
culate qualities of articles using qualities of editors. Editors
generally edit multiple articles, so if a good quality article
has a short edit history and if editors obtain high qualities
from the other articles, baseline calculates a low quality for
the article whereas both once and proposed calculate a high
quality.

In these experimental results, we also found that the av-
erage precision ratio of proposed is low, about 0.035. This
means that when we select the articles with the top 100 qual-
ities, we found that only about 3.5 articles are featured or
good, which is an extremely small number when compared
with a general information retrieval method. However, in
our results, we think that our proposed system outputs ap-
propriate qualities, because many good quality articles are
not selected as featured and good articles. Therefore, we
did experiment 2. In this experiment, we manually decided
whether articles were high quality or not. Moreover, we also
discuss why the average precision ratio of experiment 1 is
low.

4.3 Experiment 2: Manual Evaluation
In this section, to confirm that our proposed method did

not judge poor quality articles to be of good quality, we
measure the accuracy of article qualities using the answer
set that was manually selected. In this experiment, we cre-
ated three article lists, which were ordered by the qualities
of baseline, once, and proposed, and pick up the top 100
articles from each list. Then, the three observers, graduate
school students who do not know about these systems, man-
ually decided whether the articles were good quality or not
by hand. The observers evaluated 193 articles with no du-
plicates. Then, when the three observers decided an article
as good quality article, we decided as good quality article.
When evaluate articles, the system shuffled these three lists,
so the observer did not know which lists the observer evalu-
ates. We decided that an article was good quality only if all
its texts were high quality. If it had at least one poor quality
text, the observers decided the article was poor quality. The
observers also decide very short articles as poor quality.

Figure 8 shows the precision ratio at each rank. From this
figure, we found that 78 articles from proposed, 69 articles
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proposed *, once *, baseline * are the results using fea-
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from once and 61 articles from baseline were good quality
articles. We determined that our proposed method could
calculate more appropriate article qualities than the baseline
method.
We should discuss the correctness of experiment 1 using

this result. In Figure 8, we also show the precision ratios
of the three methods when we use only featured and good
articles as good quality. From this result, we found only two
articles from proposed and one article from once and base-
line as good quality from top 100 articles. These articles are
also decided as good quality articles by manual evaluation.
From this result, the number of good quality articles at ex-
periment 2 is 40 times larger than them at experiment 1.
Then, when we manually evaluate all articles, the precision
ratio of experiment 1 should increase.
The articles consisting of lists or data (such as the arti-

cles listing all a TV program’s episode list, F1 driver list,
and famous people list born in 1900) are ranked higher than
the other articles. This is because, these articles are very
long, and many editors may not read articles from top to
bottom, then many texts tend to survive beyond long edits.
However, we believe that there are higher quality articles on
Wikipedia. Therefore, we should categorize articles into sev-
eral types, and develop an appropriate calculation method
for qualities for typical types of articles.

5. CONCLUSION
Wikipedia is one of the most popular and highest quality

encyclopedias created by many editors. The information on
Wikipedia keeps expanding, but its quality is not propor-
tional to its quantity. In this paper, we have presented a
method to identify good quality articles by mutually evalu-
ating qualities of editors and texts.
In this paper, we introduced a combination of a survival

ratio method and a link analysis method. There are many
vandals in Wikipedia, and many vandals attack Wikipedia
by deleting good quality texts. In our proposed method,
editor qualities affect text qualities instead of using only

text survival ratio. Therefore, when the vandals delete good
quality texts, they do not affect the survival ratio of the
texts, because the editor qualities of the vandals are low
value. As a result, the text qualities which are attacked
by vandals do not decrease. Using this method, we can
calculate accurate text qualities using editor qualities.

Our proposed approach’s strongest point is the resistance
to vandalism. In experiment 1, 36% of all good quality ar-
ticles attacked by vandals are identified as good quality ar-
ticles using our proposed method, but the baseline system
identify all good quality articles as poor quality. Moreover,
using manual evaluation in experiment 2, our proposed sys-
tem could find 78 good quality articles, whereas naive sur-
vival ratio based system could find 61 good quality articles.
From these results, we confirmed that our proposed system
could calculate accurate quality using editor qualities.

Quality of information is becoming increasingly impor-
tant in information retrieval research field. An information
retrieval system retrieves the documents that are relevant
to the user’s query, but the system is not concerned about
whether the documents are good quality or not. However,
if the retrieved documents are poor quality, they should not
be retrieved even if they are relevant. Therefore, as Toms
et al. [20] already mentioned, when an information retrieval
systems and a document quality measurement system are
integrated, we will develop an information retrieval system
more accurate than current information retrieval systems.

Finally, we describe five open problems:
Vagueness of quality: In this paper, we calculated edi-

tor qualities in sections 3.3.3 and 3.3.5. However, this editor
quality is not always distinct because the frequency of edit-
ing is different for each editor. We suppose that if an editor
rarely edits Wikipedia articles, the editor may just happen
to obtain a high quality. However, the vagueness of the ed-
itor quality should be high, because there is less evidence
to calculate the editor quality for this editor. Therefore, we
should develop a method to calculate both editor quality
and the vagueness degree of editor quality.

Use of natural language processing techniques: In
our proposed method, we do not analyze linguistic struc-
tures; we only count the number of letters in texts. A strong
point of our proposed system is that it can adapt to different
language versions of Wikipedia articles. However, a weak
point is that it cannot use important features that come
from linguistic features. In our experiment, we found that
good quality articles are always written in formal language.
Moreover, Sabel et al. [21] said that text analysis is useful
for calculating qualities. For example, if an editor changes
“A is a B.” to “A is not a B.” the number of letters changes
by only three, but the meanings of these sentences are com-
pletely different. Therefore, we should use natural language
analysis techniques for calculating survival ratio of texts.

User interface and visualization: We developed a
Web-based user interface. In this user interface, all users
use the same Web pages as a result. However, we believe
that undemanding and demanding users will want to browse
different Web pages [22]. For example, if a text were mostly
low quality, the system would determine it to be low quality
for demanding users but high quality for undemanding users.
Holloway et al. [23] and Otjacques et al. [24] have already
discussed the user interface of Wikipedia before. Therefore,
we should develop a user interface that is useful for every
user.



Scalability: We implemented our system on a single PC
with four CPUs and a 24 GB memory. As a result, this
system took about 10 days to analyze all articles on the
Japanese version of Wikipedia. Therefore, to analyze the
English version of Wikipedia, we will need more than 100
days because the edit history of English Wikipedia is 10
times larger than that of Japanese Wikipedia. However,
the algorithm of our proposed method is similar to existing
HITS and PageRank algorithms. These algorithms can eas-
ily be adopted to map/reduce frameworks. Therefore, if we
use multiple cluster PCs and implement our methods using
these frameworks, we will reduce calculation time of article
analysis. We will therefore work on developing systems that
are more scalable.
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