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ABSTRACT

The problem with distributed representations generated by neural

networks is that the meaning of the features is difficult to under-

stand. We propose a new method that gives a specific meaning to

each node of a hidden layer by introducing a manually created word

semantic vector dictionary into the initial weights and by using

paragraph vector models. Our experimental results demonstrated

that weights obtained based on learning and weights based on the

dictionary are more strongly correlated in a closed test and more

weakly correlated in an open test, compared with the results of

a control test. Additionally, we found that the learned vector are

better than the performance of the existing paragraph vector in the

evaluation of the sentiment analysis task. Finally, we determined

the readability of document embedding in a user test. The defini-

tion of readability in this paper is that people can understand the

meaning of large weighted features of distributed representations.

A total of 52.4% of the top five weighted hidden nodes were re-

lated to tweets where one of the paragraph vector models learned

the document embedding. Because each hidden node maintains

a specific meaning, the proposed method succeeds in improving

readability.

KEYWORDS

Distributed representation learning, semantic vector, semantic lexi-

con, paragraph vector, word2vec, Twitter, sentiment analysis

ACM Reference format:

Ikuo Keshi, Yu Suzuki, Koichiro Yoshino, and Satoshi Nakamura. 2017. Se-

mantically Readable Distributed Representation Learning for Social Media

Mining. In Proceedings of WI ’17, Leipzig, Germany, August 23-26, 2017,

7 pages.

https://doi.org/10.1145/3106426.3106521

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

WI ’17, August 23-26, 2017, Leipzig, Germany

© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-4951-2/17/08. . . $15.00
https://doi.org/10.1145/3106426.3106521

1 INTRODUCTION

Distributed representations named word2vec and paragraph vec-

tors, computed using simple neural networks with context informa-

tion as features, have been widely used [8, 11–13]. The paragraph

vectors achieved state-of-the-art results on sentiment analysis at

the time of publication [8]. The problem in engineering with the

distributed representations of words and paragraphs is that the

meaning of the distributed representations is difficult to under-

stand. Thus, tests and improvement in the quality of the application

system are necessary because the distributed representations are

not readable as is.

WordNet [14], FrameNet [1], both of which are in English, and a

word semantic vector dictionary [5] in Japanese using manual con-

struction have been proposed. The word semantic vector expresses

the relationship between a word and 266 feature words as a binary

value that is related or unrelated. The word semantic vector dictio-

nary includes feature words related to each core word comprising

20,330 important words in Japanese. We proposed an integration

method to learn words expanded using the word semantic vector

dictionary with a paragraph vector model to solve the problem of

word sparsity in Twitter [6]. The integration of the word semantic

vector and paragraph vector learning showed that the accuracy

of sentiment analysis improves by learning context information

of a particular domain even if words are sparse. We showed that

expanded feature words for Tweets can be used for error analysis

of sentiment analysis, but it was still difficult to read the features

of distributed representations.

This paper proposes a new method of automatically learning

readable distributed representations using the word2vec and para-

graph vector models based on the word semantic vector dictio-

nary [5]. Word semantic vector dictionaries are more like dis-

tributed representations rather than semantic lexicons like Word-

Net [14] and FrameNet [1] because each core word is defined as a

fixed-length dense vector. More specifically, 266 feature words are

taken as the hidden nodes of each model. Then, the initial weights

between the input word and each hidden node, which is a seed

vector, are given based on the dictionary. We investigated whether

or not the meaning of each hidden node is maintained, even after

learning is done by the neural networks related to core words. Also,

the meaning of the hidden nodes is maintained to some extent in

new words. If the learning is insufficient, then the weights after

learning will naturally correlate with the initial weights. However,

the accuracy of sentiment analysis using distributed representations
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after learning by the proposed method is better than the paragraph

vector performance.

Finally, we present our evaluation of the readability of document

embedding in a user test conducted through crowdsourcing. The

definition of readability in this paper is that people can understand

the meaning of large weighted features of distributed representa-

tions. A total of 66.1% and 52.4% of the given feature words were

related to tweets where one of the paragraph vector models learned

the document embedding for the top weighted hidden node and

the top five weighted hidden nodes, respectively. Therefore, our

method improves the readability of the distributed representations,

which are the weights of each hidden node for words and para-

graphs. Also, it can be applied to mining of social media such as

Twitter by using each feature word as a conceptual axis.

2 RELATEDWORK

Research on the integration of external semantic lexicons and dis-

tributed representation learning has been active. The following

three research directions are being studied.

• Pre-processing.Tweet2vec trained the CNN-LSTMencoder-

decodermodel on 3M randomly selected tweets populated us-

ing data augmentation techniques, which are useful for con-

trolling generalization error for a deep learning model [20].

Data augmentation techniques refer to replicating tweets

and replacing some words with their synonyms using Word-

Net [14].

Feature word expansion on Twitter of our previous proposal

is part of this direction [6].

• Learning process. RC-NET [21] is built upon the Skip-gram

model [12], the objective function of which is extended by

incorporating both the relational knowledge (like is-a, etc)

and the categorical knowledge (like synonyms) as regular-

ization functions. Bollegala et al. proposed a global word

co-occurrence prediction method [15] using the semantic

relations in WordNet as a regularizer [3].

Our proposal in this paper is part of this direction.

• Post-processing. Retrofitting [4] is a technique for fitting

learned word vectors to semantic lexicons.

In this paper, we used this technique to create initial weights

of core words.

Experiments have shown that the precision of distributed repre-

sentations of words has qualitatively improved the best in [3] and

that the accuracy of sentiment analysis has improved in [20]. Both

showed that they were state-of-the-arts techniques using standard

datasets on word similarity and sentiment analysis. Similar studies

have been done using topic models based on LDA [2]. Topical word

embeddings(TWE) [10], in which “topical word” refers to a word

taking a specific topic, have been proposed to measure contextual

word similarity by extending the Skip-gram model [12]. Also TWE

outperformed the Skip-gram model in word similarity tasks. TWE

is also applied to tweet topic classification tasks and performs better

than paragraph vectors [9]. However, no reports on the relevant

literature describe an attempt to give meaning to each hidden node.

Onemodel of paragraph vectors (PV-DBOW) [8] uses pre-trained

word embeddings that reportedly improve task performance [7].

Figure 1: Word2vec and paragraph vector models.

Although this paper shows the possibility of learning proper docu-

ment embedding with good initialization of word embeddings, it

does not demonstrate the possibility of interpretation of hidden

nodes.

The point to emphasize is that topic models, for example, can

be used to assign topic numbers and related keywords to each

tweet, but people cannot understand the meaning of large weighted

features of tweet embedding using any of the conventional methods.

3 PROPOSED METHOD

3.1 Hypothesis

This paper presents a test of the hypothesis that the meaning of

each hidden node is maintained using three approaches even after

learning: using word2vec and paragraph vector models, assigning

specific meaning to each hidden node, and giving the strength of

the semantic and associative relationship with each hidden node as

the initial weights of important words.

The neural network learns the concept automatically for the

hidden layer. Thus, we thought the weights would adapt to the

context with the concept maintained by pre-setting the appropriate

conceptual classification to be learned to the nodes of the hidden

layer and by giving the suitable initial value.

3.2 Word2vec and Paragraph Vector Models

Figure 1 presents two variants of word2vec and paragraph vector

models [8]. The distributed memory model of paragraph vectors

(PV-DM) predicts the target word vector of the next word w (t)

from the context vector obtained by adding a paragraph ID to input

words within the context window. The continuous bag of words

(CBOW) of word2vec does not add the paragraph ID to the input

layer, but it is fundamentally the same as the PV-DM.

The paragraph vectorwith a distributed bag ofwords (PV-DBOW)

learns the paragraph vector to predict the context word vectors of

randomly selected surrounding words within the context window.

Skip-gram of word2vec is used to learn the vectors of the target

words in the PV-DBOW. In Skip-gram, the target word vector is

learned so that the inner product of the target word vector and the

context word vector of the surrounding words is larger than the

inner product of the context word vector of words other than the

surrounding words.

3.3 Word Semantic Vector Dictionary

We selected 266 conceptual classifications that belong to six major

classes and 29 upper concepts as feature words in the word semantic

vector dictionary [5], as presented in Table 1. For core words, we
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Table 1: Classification of feature words.

Six large Examples of Examples of

classifications 29 upper concepts 266 feature words

Human· Human Human, Name, Male, Female, Child

Life Creature Animal, Bird, Insect, Microbe, Plant

Human Artificiality Tool, Mechanical·Component, Building

environment Traffic·Communication Communication, Traffic·Transportation

Natural Area Place name, Country name, Japan, City

environment Nature Land, Mountain, Sky, Ocean

Abstract Spirit·Psychology Sense, Emotion, Happiness, Sadness

concept Abstract concept State·Aspect, Change, Relationship

Physics· Motion Motion, Halt, Dynamic, Static

Substance Physical characteristics Warmth, Weight, Lightness, Flexible

Civilization· Humanities Race, Knowledge, Speech

Information Science Mathematics, Physics, Astronomy

Table 2: Grant criteria by logical relationship.

Logical relationship Core words ãĂĂ Feature words

Class inclusion Autumn Season

Synonym relationship Idea Thought

Part–whole relationship Leg Human body

Table 3: Grant criteria by associative relationship.

Core words Feature words

Love Kindness, Warmth

Up Economy, Video

Leg Car, Traffic·Transportation

selected 20,330 words from encyclopedias, newspapers, websites,

instruction manuals, and Kansei words.

A human expert assigned feature words to each core word based

on the following criteria. Feature wordswere assigned from a logical

and associative relationship. The logical relationship refers to those

in which the feature words have direct relevance for core words,

as shown in Table 2. The associative relationship refers to those in

which feature words are related to core words by association, as

shown in Table 3.

3.4 Model setting for testing the hypothesis

In this section, we describe the setting to encode the initial weights

of the core words based on the strength of the relationship with

each feature word, and we describe our test of the hypothesis using

Skip-gram as an example.

A method has been proposed for generating a word vector by

recursively expanding a definition sentence for a word in a dictio-

nary [19]. The word semantic vector dictionary can be regarded

as defining a core word with 266 types of feature words. Because

feature words are also core words, recursive extension is necessary.

However, convergence occurs when the feature word is expanded

several times because the definition sentence of the core word is lim-

ited to 266 words. Also, a method has been proposed for retrofitting

word vectors according to related words in a dictionary [4]. In that

Core words Feature words�
isease: �Human, ife, ife-and-death, isease, Visceral-organ


                   State·Aspect, Inferior, Negative, arkness, ..

Human: �Human, Male, Female, Child, Adult, Elderly, Race·,..

Life: 
   
Human, Animal, Plant, Life, Birth, Human body, …

Negative: �Killing, Crime, War·Dispute, Disaster, Sorrow, Fear,

                  
Influence·Degree, Value·Quality, Inferior, Negative,…


Retrofitted word vector:�
[Disease] Disease: 0.9663, Darkness: 0.0990, Inferior: 0.0990, �
State·Aspect: 0.0988, Life-and-death: 0.0969, Medical·�
Pharmacy: 0.0968, Visceral-organ: 0.0966, Human: 0.0567, �
Life: 0.0518, Negative: 0.0498, Race·Ethnic: 0.0075,...

t

Figure 2: Example of retrofitting “Disease.”

method, we generate a seed vector of the core word by recursively

expanding the dictionary using retrofitting tools1.

When building a vocabulary from the corpus, the initial vectors

of the following two kinds are created first.

• The 266 feature words are added to the vocabulary as one-

hot vectors with dimensions corresponding to respective

feature words set to 1.

• Other initial word vectors including core words extracted

from the corpus are 266-dimensional zero vectors.

The algorithm aims at bringing word vectors closer to the rela-

tionship of the word entries of the lexicon as post-processing of

learning of word vectors. We applied this algorithm for retrofitting

the aforementioned initial word vectors, which are 266-dimensional

one-hot or zero vectors, into the word semantic vector dictionary.

The retrofitting algorithm is shown as the following online up-

date [4]:

qi =

∑
j :(i, j)∈E βi jqj + αi q̂i∑
j :(i, j)∈E βi j + αi

(1)

qi is the retrofitted word vector for the core word wi , q̂i is the

aforementioned initial vector for wi , and αi is the weight of the
initial vector; currently it is set to the number of given feature

words w j for wi . qj is the retrofitted word vector for the given

feature wordw j , and βi j is the weight of the given feature wordw j

for the core wordwi ; currently, the weight βi j is set to 1. Equation 1
multiplies the initial vector q̂i of the core wordwi by the weight αi ,
adding the vectors obtained by multiplying the retrofitted vector

qj of the given feature wordw j by the weight βi j and by dividing
it by the sum of both weights. Running the procedure for about ten

iterations increases the relationship between each core word and

266 feature words from an average of 9 to an average of 100. The

relationship is increased for each core words to expand the feature

words given to the core word recursively.

Figure 2 presents an example of retrofitting “Disease,” which is

a feature word and core word in the dictionary. The points of this

algorithm are the following.

• The retrofitted word vector is close to the original vector. In

the case of “Disease,” the original vector is a one-hot vector.

• When the feature words assigned to a retrofitted core word

are not expanded as core words, the weights of the feature

1https://github.com/mfaruqui/retrofitting
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Travel:1

Travel

Traffic
Transportation

Z1,1

Z1,V

Z2,1

Z2,V

Zc,1

Zc,V

Human

Hobby Recreation

Home Family

Service industry

Airplane

Cheapest

Tour

Brazil

0.0465
0.9705

0.1170
0.1170

0.0978
0.073

0.0551

Target word

Context word 1

Context word 2

Context word 3

Pleasure

Cheap

Figure 3: Skip-gram model setting for testing.

words are almost equal. When expanded, the weights de-

crease according to the number of feature words to be ex-

panded.

In the vocabulary, each word has two vectors. One is an input

vector, which is the weights between the input node and each

hidden node, and the other is an output vector, which is the weight

between each hidden node and the output node. The retrofitted

word vector was used as the seed vector of the input vector. The

initial weights of the output vector were set to 0, which is the

default setting of gensim’s doc2vec library2.

Figure 3 presents an example of the Skip-gram setting for test-

ing the hypothesis. The input layer specifies the target word. The

output layer consists of three context words appearing around the

target word. The hidden layer comprises the nodes corresponding

to 266 feature words. The weights of the target word for each hid-

den node are retrofitted weights. Each weight is updated by back

propagation so that the probability of predicting the context words

increases when the target word is input. The objective function is

the following [12, 16].

E = − logσ
(
v′w

T
h
)
−

∑
w j ∈Wneд

logσ
(
−v′wj

T
h
)

(2)

The hidden layer outputting h is vwi
T . vw is an input vector with

an initial vector that is generated by Equation 1, and v′w is the

output vector of the word w.Wneд is the set of words for negative

sampling. The output vector is updated as follows [16].

v′wj

(new )
= v′wj

(old )
− η

(
σ
(
v′wj

(old )T
h
)
− tj

)
h (3)

where tj is 1 when w j is the context word and 0 otherwise. The

initial output vector v′w is 0. Thus, the output vectors of the context

words become close to the input vector, which is the seed vector,

of the target word.

4 EXPERIMENTS

In these experiments, we examined the relationship between sen-

timent analysis using a single domain benchmark and readability

of tweet embedding in a user test. We also tested the hypothesis

on whether or not weights obtained based on learning and weights

2https://radimrehurek.com/gensim/models/doc2vec.html

Table 4: Configuration of the corpus.

Dataset Positive Negative Neutral

Training set 3654 2375 2802

Dev. set 608 396 467

Test set 609 396 467

Unlabeled tweets 560,853

Table 5:Hyper-parameter settings for learningword vectors.

Hyper-parameters Values

Dimensionality of the feature vectors 266

Number of iterations over the corpus 20

Learning rate Initial:0.025, Minimum:0.0001

Window size 5

Downsample threshold for words 1e-5

Number of negative sampling words 15

Table 6: Example of retrofitted and learned word vectors for

a core word that is a feature word itself.

Generation method feature words and weights arranged in descending order

Retrofitted travel:0.97, traffic·transportation:0.12, hobby·recreation:0.1,

vector for home ·family:0.1, service industry:0.1, airplane:0.06,

“travel” human:0.05, car:0.05, overseas:0.05, Japan:0.05,

learned vector for travel:1.41,machine:0.65, image:0.61, company:0.55,

“travel” state·aspect:0.52, traffic·transportation:0.5, hobby·

by PV-DM recreation:0.43, education:0.40, facility:0.38, behavior:0.36,

learned vector for travel:1.45, time:0.45, custom:0.44, clothes:0.43,

“travel” state·aspect:0.43, Europe:0.42, low:0.42, image:0.41,

by PV-DBOW public system:0.40,machine:0.40,

based on the dictionary are correlated in a closed test and an open

test, compared with a control test.

4.1 Corpus

We collected Twitter data about two product brands of smartphones,

as shown in Table 4. For the 560,853 unlabeled tweets, only noises

such as the URL and the account name were deleted. The evaluation

benchmark of sentiment analysis consisted of 11,774 tweets of

one product brand labeled using crowdsourcing as either positive,

negative, or neutral [6]. Japanese morphological analysis, MeCab3

and its dictionary mecab-ipadic-NEologd4, which expanded it by

millions of new words and named entities from language resources

on the Web, were used to extract words from tweets. The number

of words extracted from the corpus five or more times was 30,468,

while the number of retrofitted core words was 6,814 words.

4.2 Learning Word Vectors by Our Method and
Evaluation of Correlation Coefficients

First, the word vector was updated using two variants of paragraph

vector models with unlabeled tweets only using gensim’s doc2vec

library. On the basis of the accuracy of the sentiment analysis

of the final stage, we decided the values of hyper-parameters for

3http://mecab.googlecode.com/svn/trunk/mecab/doc/index.html
4https://github.com/neologd/mecab-ipadic-neologd
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Table 7: Example of retrofitted and learned word vectors for

a core word that is not a feature word.

Generation method feature words and weights arranged in descending order

Retrofitted computer:0.42, machine:0.42, communication tech.:0.42,

vector for mass media:0.42, electronics:0.40, plane:0.22,

“screen” color:0.22, communication:0.22, advertisement:0.04,

learned vector for computer:0.83, machine:0.78, image:0.78,

“screen” state·aspect:0.73, company:0.68, plane:0.61,

by PV-DM education:0.55, book:0.55, facility:0.52, color:0.50,

learned vector for state·aspect:0.68, plane:0.50, computer:0.45, image:0.34,

“screen” human body:0.32, relationship:0.31, chemistry:0.31, civil

by PV-DBOW engineering·architecture:0.29, tool:0.26, color:0.26,

Table 8: Evaluation results 1: correlation coefficients be-

tween initial and learned word vectors.

Control Test Closed Test Open Test

PV-DM/CBOW 0.224 0.608 0.340

PV-DBOW/Skip-gram 0.211 0.642 0.395

paragraph vector learning of the conventional method. The hyper-

parameter settings for learning the corpus are shown in Table 5.

Our method used the same hyper-parameter settings. Here, the

size of the feature vectors was adjusted to the number of feature

words, 266. When the number of dimensions of the feature vectors

exceeded 266, we could set the initial value 0 or the random number

for the part exceeding 266 in our method. However, no difference

occurred in accuracy between 266 dimensions and 300 dimensions

for the corpus in the paragraph vector of the conventional method.

Thus, we utilized 266 dimensions. Both the PV-DM and PV-DBOW

have the same hyper-parameter settings. We used the sum of the

input vectors for the hidden layer of the PV-DM for the same reason

as with the hyper-parameter settings.

Table 6 shows an example of retrofitted and learned word vectors

for a coreword “travel,” which is a featureword itself. The retrofitted

word vector for “travel” was similar to a one-hot vector. The weight

of the feature word “travel” of the learned word vector “travel” was

more than twice the weight of other feature words in the PV-DM

and more than three times the weight of other feature words in

the PV-DBOW. Because our method learned the word vectors with

a smartphone corpus, “machine” and “image” had higher weights

in both of the learned word vectors. Table 7 shows an example of

retrofitted and learned word vectors for a core word “screen,” which

is not a feature word. Feature words with the top eight weights of

retrofitted vectors for “screen” are those given to the core word

“screen.” Of these, the feature word “computer,” “plane” and “color”

had higher weights in both of the learned word vectors. Although

“image” is not a feature word assigned to the core word “screen,” it

gained a high score in both learning methods with the smartphone

corpus.

Table 8 presents correlation coefficients between retrofitted vec-

tors and learned vectors in the closed and open test, compared with

those of the control test. The control test shows the correlation be-

tween the word vectors after learning by the conventional method

and the initial vectors, the closed test shows the correlation for the

core words used for learning by the proposed method, and the open

Training unlabeled 
tweets using the 
proposed method

Training unlabeled 
tweets using the 

conventional method

Feature extraction of 
the training and dev. set 

with doc2vec

SVM classifier 
construction for the 

training set

Hyper-parameter tuning of feature 
extraction for the dev. set

Evaluation for the test 
set

Feature eextraction ofextr

clas

er tu

t 

eature
t

n fo

Figure 4: Procedures of sentiment analysis.

test shows the correlation for the core words not used for learning

by the proposed method as follows.

• Control test:We selected the core words (814 words) in the

top 2% high-frequency words (2343 words) for the evaluation

because high-frequency words had a stronger influence on

tweet vector learning than low-frequency words. We evalu-

ated the correlation coefficients between the initial vectors

as a control test using default random initialization and the

learned vectors.

• Closed test: For the 814 core words, we combined all ele-

ments of retrofitted word vectors with 0.013 or more as one

vector and similarly learned word vectors. A feature word

with a value of 0.013 or less corresponded to a relationship

according to a two-step recursion with the core word. There-

fore, we excluded feature words having a value less than

0.013 from the calculation of the correlation coefficient be-

cause the relationship with the core word is not high. Then,

we calculated the correlation coefficients of the two vectors.

The results showed a stronger correlation compared with

that of the control test.

• Open test: Let the word vectors learn for the unlabeled

tweets excluding the aforementioned 814 retrofitted core

word vectors. Subsequently, we calculated the correlation

coefficient between the aforementioned 814 retrofitted core

word vectors with 0.013 or more and the corresponding 814

learned word vectors. The results showed a weak correlation.

4.3 Evaluation of Sentiment Analysis

Second, we evaluate the tasks of sentiment analysis using the para-

graph vector of the conventional method and our method. The

experimental procedures are presented in Figure 4. The only differ-

ence between the methods was the initial weights when learning

the unlabeled tweets. Specifically, the evaluation steps were the

following.
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Table 9: Evaluation results 2: F-score for predicting positive

and negative tweets in 3-class sentiment analysis.

Dev. Set Test Set

Conventional Method 68.6 68.8

Our Method 70.5* 70.2**

vs. Conventional Method *p=0.0006<0.05 **p=1.9e-05<0.05

Table 10: Evaluation results 3: Readability of hidden nodes

and F-score of the corresponding 2-class sentiment analysis.

Readability of hidden nodes Sentiment Analysis

Tweet Vectors Top1 Top5 Top10 F-score

PV-DBOW Positive 64.5% 56.1% 46.6% 86.8

PV-DBOW Negative 66.8% 47.7% 41.5% 78.3

PV-DBOW All 66.1% 52.4% 44.1% 82.5

PV-DM Positive 56.4% 46.2% 36.9% 80.2

PV-DM Negative 67.3% 43.8% 37.8% 74.7

PV-DM All 61.9% 45.0% 37.3% 77.5

Control Test for Positive 16.1% 15.4% 80.2

Control Test for Negative 13.9% 13.9% 74.7

Control Test for All 15.0% 14.6% 77.5

• [Step 1] In our method, we updated word vectors by having

it learn unlabeled tweets with the PV-DM and PV-DBOW

based on the retrofitted word vectors, as described in the

previous section. In the conventional method, we used the

same settings of the hyper-parameters shown in Table 5

for the PV-DM and PV-DBOW based on standard random

initialization.

• [Step 2] In learning the paragraph vector of the training and

dev. set, let the word vectors learned in Step 1 be the initial

value of the word vectors. We combined the PV-DBOW and

PV-DM for each tweet and created a tweet feature vector.

We built a tweet classifier with a support vector machine

(SVM) using the labels of each training tweet as teacher data.

• [Step 3] Each tweet vector and its label of the development

set was entered into the classifier, and the error rate [=100-

(Fpos+Fneд )/2] was measured. Bayesian optimization auto-
matically adjusted the parameters of the paragraph vector

learning so that the output of the objective function, which

is the error rate, was minimized [18].

After Step 2 and Step 3 were repeated until the error rate con-

verged, the hyper-parameter of the paragraph vector learning was

determined.

As presented in Table 9, we found that the evaluation results of

our method were better than those of the conventional method in

the macro-average F-score [=(Fpos+Fneд )/2] of positive and nega-
tive prediction in three-class classification, which is a rating mea-

sure utilized by SemEval [17].

4.4 User Test for Readability

Finally, we conducted a readability user test of hidden nodes for

the learned tweet vectors. We prepared feature words for hidden

nodes with top ten weights for 30 tweets, which were estimated

to be positive or negative by using the PV-DM and PV-DBOW

individually. The top ten feature words were given for each tweet,

and 30 user testers were asked through crowdsourcing whether or

not each tweet was associated with the ten feature words. Table 10

shows what percentage of the Top 1, 5, and 10 weighted hidden

nodes of PV-DBOW or PV-DM tweet vectors that were classified

as either positive or negative were related to the tweets. For the

PV-DBOW, the percentage of the given feature words were related

to the tweets where one of the paragraph vector models learned the

document embedding was 66.1% for the top weighted hidden node

and was 52.4% for the top five weighted hidden nodes. The PV-DM

results were 61.9% for the top weighted hidden nodes and 45.0%

for the top five weighted hidden nodes. Overall, the PV-DBOW

readability was better than that of PV-DM, though the PV-DM

results tended to be more readable for negative tweets compared

with those of the PV-DBOW. The third results show a control

test. The control test assessed how user testers scored on five or

ten feature words randomly chosen for the tweets classified as

either positive or negative using PV-DM. The reason is that none

of the conventional methods which give the meaning of features

of tweet embedding. A comparison with the control test showed

that our method apparently improves the readability of distributed

representation learning.

Table 10 also shows the F-score in 2-class sentiment analysis

using the corresponding positive and negative vectors for reference.

A common trend was evident in the readability of the hidden nodes

and sentiment analysis.

For the five cases of the paragraph vector (PV-DBOW) in the

aforementioned readability user test, each tweet and a list in de-

scending order of the weight of the feature words are shown below.

Product B is amazing!

[power, strong, human, worth, state·aspect, facility, education, positive,]

Product B is a godsend!

[state·aspect, thought, human, relationship, life and death, existence, power,

strong,]

Oh, after all, the sound of Product B is something good

and deep.

[sound, advertisement, state·aspect, image, emotion, worth,music, power, sense,]

While listening to the music with Product B, I was sur-

prised with how good the sound quality was.

[state·aspect,music, facility, action, ethics, service industry,emotion, quantity,]

Even if Product B is fully charged, the LED remains lit.

[brightness, machine, luminescence, state·aspect, computer, activity, essence,]

For the first two similar tweets, the common feature words

“power,” “strong,” and “human” had higher weights. Other tweets

with the PV-DBOW tweet vectors that were classified as positive

and the three feature words with the top ten weights were as fol-

lows.

“Product B is the best.” “Product B is the most attractive.”

In the following two tweets on the sound quality of smartphones,

the common feature words “music” and “emotion” had higher
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weights. In the last tweet on charging and LED lighting, the feature

words “brightness” and “luminescence” had higher weights. Also,

importantly, clear differences emerged in the top feature words of

these three groups’ tweets.

The results of this readability user test revealed the following

points.

• By looking up the top feature words of the learned tweet

vectors, you can determine whether or not the learning is

proceeding well.

• The conceptual axis can further filter the results of the sen-

timent analysis for social media mining. Each feature word

itself or a combination of feature words becomes a concep-

tual axis.

5 CONCLUSION

We proposed a new method to give specific meaning to each node

of a hidden layer in neural networks using a word semantic vector

dictionary to enable the readability of word and document embed-

dings. We tested a method of maintaining the meaning of hidden

nodes and found that the macro-average F-score of sentiment anal-

ysis was better than that of the conventional method. The meaning

was maintained to some extent not only for core words but even

for new words. We also tested the readability of hidden nodes in a

user test. A total of 52.4% of the top five weighted feature words

were related to tweets.

The proposed method improved the readability of distributed

representations because these distributed representations of words

and paragraphs learned by neural networks are weights for each

hidden node with a specific meaning.

Future research will be conducted to optimize 264 feature words.

We will also determine whether or not our method is universal and

applicable to other languages using a standard English dataset of

a sentiment analysis task, word similarity task, and word analogy

task. We can also evaluate related work [3, 21] using WordNet as a

regularizer of the learning process in our method.

We believe that the performance of the task of social media min-

ing could be improved by our method without any annotated data

because the performance of sentiment analysis and the readability

of document embedding show similar trends.
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